If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/4(10)^2t=5
We move all terms to the left:
1/4(10)^2t-(5)=0
Domain of the equation: 410^2t!=0We multiply all the terms by the denominator
t!=0/1
t!=0
t∈R
-5*410^2t+1=0
Wy multiply elements
-2050t^2+1=0
a = -2050; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-2050)·1
Δ = 8200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8200}=\sqrt{100*82}=\sqrt{100}*\sqrt{82}=10\sqrt{82}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{82}}{2*-2050}=\frac{0-10\sqrt{82}}{-4100} =-\frac{10\sqrt{82}}{-4100} =-\frac{\sqrt{82}}{-410} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{82}}{2*-2050}=\frac{0+10\sqrt{82}}{-4100} =\frac{10\sqrt{82}}{-4100} =\frac{\sqrt{82}}{-410} $
| 28-(4q-+10)=4q+18 | | -5(3-8d)=31 | | 6x^2-11x+12=0 | | x4+3=7 | | 4z-9-3=23 | | 7(x-4)=7x-12 | | E^x+4x+2=0 | | 3x-1/5=5 | | 18x-4=2(9x-6) | | 3(5−2x)=−2(6–3x)−10x | | 4x^2+(x+2)^2=4x(x+2) | | (7x-1)+(6x-1)=180 | | x+(3x+1)/3-(x+3)/5+1=2(x+3)-(2-x)/10-(5x+7)/3 | | 12+6m=6m-1 | | 3/4b+4=21B-9 | | 2⋅(x−8)=−10 | | -7(t+4)+5=5 | | 30x+30x+10-6x+18+30=60x+180-6x-3x-50x+70 | | 64=-8b | | 10=f/5 | | 340+4x=1200 | | 5(p-6)-8=45-8 | | 11c=44 | | -40=5b | | (x-3)(x+4)(2x-7)(2x-6x)=0 | | -2.1+0.3d=0.33d | | 3(q+2)=7 | | -7=y/2 | | 6x^2-x+63=0 | | 1x÷5-3x+2=2x÷5+18 | | -2m^2-5m+25=0 | | (200+x)+3x+x=1400 |